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A b s t r a e t - - A  mathemat ica l  solution is presented  of how randomly oriented planes and lines are rotated and 
deformed  dur ing  progressive h o m o g e n e o u s  simple shear.  The  results  are used  to predict the  redistribution and 
modificat ion of pre-shear  folds. For  most  initial or ientat ions very large shears  ( , / =  20 or more)  are required to 
make  the fold axes subparallel  to the  a-axis of the  simple shear  deformat ion.  

Dur ing  progressive deformat ion  the  principal axes of the  two-dimensional  strain in a randomly or iented plane 
rotate,  bo th  in relation to the  kinematic  axes and  in relation to mater ia l  lines included in the  plane.  This  may  result 
in very complicated s t ructures  when  competen t  layers are involved in the  deformation.  Combinat ions  of super im- 
posed  fold and  boudinage  structures,  with orientat ions highly dependen t  on the  initial orientat ion of the layer, are 
to be expected.  

I N T R O D U C T I O N  reorientation and deformation of pre-shear zone planes 
and lines during the formation of a shear zone by simple 

IT Is well known that shear zones in isotropic rocks shear, and some models for the initiation and progres- 
develop a cleavage, schistosity or foliation parallel to the sive development  of contemporaneous  shear zone struc- 
X'Y-plane of the finite strain ellipsoid, and often a very tures. The practical application of this theory will be 
strong stretching lineation parallel to the X-direction. described in a later paper  about  medium scale structures 

Many shear zones cut through terrains which already and their orientations within a major  Precambrian shear 
possess planar and linear structural elements with ear- zone in southeast Norway, already mentioned by 
ious orientations. An example is a folded or multiple Skjernaa (1972). 
folded gneiss terrain. As the pre-shearing structural ele- 
ments are not  in general  symmetric with the kinematic 
axes of  the simple shear deformation,  it is necessary to P R O G R E S S I V E  H O M O G E N E O U S  SIMPLE 
deal with their rotat ion and deformation in three dimen- S I T A R  
sions. 

Medium scale structures, in the form of folds and/or Rotation of planes 
boudinage structures, are very common in major  shear 
zones. The folds may be of the compositional layering, The spatial orientations of a plane P in relation to the 
which may or  may not parallel the XY-plane,  but folded kinematic axes a, b and c of a progressive simple shear 
dykes and discordant or concordant  quartz veins or deformation,  can be described by the angles v (0 ~< 
quartzo-feldspathic veins are also common. Quite corn- v < 180) and p (0 ~ p < 180) (Figs. la  & b). The plane 
moniy these folds are combined with boudinage struc- will rotate  during the deformation around its line of 
tures, but the distance between single boudins may be so intersection with the shear plane. The angle v will 
large as to make it difficult to reconstruct the original remain unchanged, while p changes to p'. For a certain 
layer, amount  of shear, given by the value of 7, P' is given by 

The structures may have formed either prior to equation (2) of the Appendix.  A diagram giving p'  as a 
shearing or as a consequence of simple shear deforma- 
tion, either f rom buckle folding and/or boudinage of b c 
competent  layers involved in the deformation,  or by ~ 0 
inhomogeneit ies in the simple shear. Stretching linea- 
tions may be parallel to the layer and the maximum finite 
stretching directions in the surface of the layer, not the v 
X-direction of the bulk finite strain. Similarly, intersec- 
tion lineations parallel to the intersections between layer 
surfaces and shear plane, are not parallel to the Y- 
direction. 

The rotation and deformat ion of planar and linear 
structures in irrotational deformations was thoroughly 
treated by Flinn (1962) and later discussed by Ramsay 
(1967) and by Talbot  (1970). Fig. 1. (a) Localisation of the  angles v and p which define the  orienta-  

This article presents a mathematical  solution for the tion of a plane. 
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v "/, but for high shears they will rotate more, except when 
~ i - - ~ ~ -  v is close to 90. 

As an example a plane with initial orientation v = 30, 
pp, 4 will have have p ' :  10.05 for -¢ 10 but 

= 161.68 for ~/= 20 and p' = 178.03 for ~/= 50. 
However, a plane with v--- 30, p = 1 will rotate much 
less: p' = 1.18 for ~, = 10, p' = 1.43 for ~/= 20 and 

a p' = 4.09 for ~ = 50. 
The largest possible rotation (p'-p) is taken up by the 

plane having the initial orientation (v, p ) =  (0, 20') 
where 20' is the angle between the shear plane and the 
other plane of no finite longitudinal strain in the strain 
ellipsoid. It will end up having the orientation 

b (v, p ) =  (0, 180-20'), and then have been rotated 
through an angle 180--40'. 20' = tan -~ 2 (Ramsay & 

Fig. 1. (b) Stereographic lower hemisphere projection showing the Graham 1970 equation 36). 
rotation of a plane (u, p) to a position (v' ,  p') .  A mathematical solution for the reorientation of 

planes in a simple shear deformation, is also given by 
function of v and p has been constructed for ~ = 4 (Fig. Carreras (1975) and Owens (1972). A magnificent 
2). It is seen that the amount  of rotation increases as v example of such reorientations is described from the 
approaches 180 (see also Figs. 71>-f). Planes having Nagssugtoqidian shear belt in West Greenland by 
small values of p will only rotate slightly for low values of Escher et al. (1975). 
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Fig. 2. Diagram showing p' as a function of v and p after a simple shear of ~ = 4. 
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Fig. 3. (a) Localisation of the angles tB and ~p which define the orientation of a line. (b) Stereographic projection showing the 
rotation of a line L (B, 'P) to a position L' (W, ,P'). (c) Triangle OLL'  from Fig. 3(b). 
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Fig. 5(d). Fig. 5(e). 

Fig. 4. Stereographic project ion showing a series of cones,  each of which contains all the lines that  have been elongated by a 
certain amoun t  given by the values of k. 

Fig. 5(a-e) .  Rota t ion  of pre-shear ing l ineations with initial or ientat ions confined by cones 1-5, 5(a). The  number s  in 
brackets  are values of X/k giving the  elongat ion of the  original central line of the cones. The  great  circles in (a) describe the 
planes which after a certain shear  (~/indicated by the numbers )  will have rotated to a position where they separate  into the 
extension and shor tening fields. These  positions are those of the k = 1 great circles in Figs. (b-e).  The squares  mark  the 

orientation of the X-axis. 
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Rotation and elongation of lines b 

A line L having an initial orientation in relation to the 
kinemati~ axes given by 13 (0 ~<13 ~< 360) and 

(0 ~< q~ ~ 90) (Fig. 3a) and an initial length 1 (Figs. 3b L 
& c), will during the deformation rotate in the plane ~x~ 
containing the line L and the a-axis through an angle to, 
and at the same time change its length. Lines initially 
oriented such that 0 < 13 < 180 will shorten in the begin- 
ning. But as they pass the be-plane during their rotation t 
they will start to stretch. Lines with 180 ~< 13 ~< 360 will 
be stretched during the whole deformation. 

The final position (13', q~') and the final length X/h for a 
certain amount of shear, is given by the equations (11), ~ "  
(10) and (9) of the Appendix. ~.~, 

All the lines that have been equally elongated after a 
certain amount of shear are contained within the surface 
of a cone given by equation (17) of the Appendix. A M 
Lambert-net  projection showing a series of such cones b 
for ~/= 4 is given in Fig. 4. If the curves on Fig. 4 are 
looked upon as contours, they give the shape of the Fig. 6. Position of the strain axes Xp and Ypin a ro ta ted  and internally 

deformed plane CBC'.  For fur ther  explanat ion see text. 
lower half of the deformation ellipsoid (notice that the 
values given are quadratic elongations). The diagram is 
divided by the two great circles describing the k = 1 b 
planes into an extension field and a shortening field. / ~ / ~  ~ .  

The angle to through which a line has rotated during .. / \ '~"\ 
the deformation (Figs. 3b & c) is given by equation (18) .~ 
of the Appendix. / ~\ .... 

The distribution of lines will be such that during f \ " 
deformation all lines which initially lay between the / ~ "~ 
shear plane and the plane with orientation (v, p)= ,/,2o ~ / ", 

/ /  ~o I ',, (0, 20')wiU spread over the shortening field, while lines ///,a ~ .  , '~ 
with other initial orientations will be concentrated into ~r~[///~ a ~ / 
the stretching field and at the two k = 1 planes, o 2 ~o 

~ : ~ ~ -  E ~ ~  M ~' Examples of the rotation and spread/concentration of ~ , 
' . \  4 / ;' lines during successive stages of the deformation are ~20~ / /  

given in Figs. 5(a-  e). Five groups of lineations, which ~0 ~a ..... /d.o 
for ~/= 0 are bounded by cones with a radius of 10 °, have ,~a6 
been chosen to illustrate the influence of the initial " ~  \ " / / '  
orientation on various distribution patterns arrived at / "~, 3 / / /  
for certain shears. Each of the groups could for a par- 
ticular shear zone define the orientation of fold axes ~ ' L  ~ 
related to pre-shearing folding. 0 ~ ' 

The modification of angular density distribution of b 
lines during simple shear deformation is not discussed Fig. 7 (a) Orientat ions of the Xp axes (crosses) and Yp axes (circles) m a 
h e r e  i n  a n y  d e t a i l .  I t  is  described by Owens (1972). plane P with initial position P0 (v, p) = (30, 40) for different values of ~/ 

indicated by the numbers.  The orientat ions of the material  lines L and 
I t  is  s e e n  f r o m  Figs. 5(a-e) that although all lines, M, initially paralleling Xa  and Yz for the first increment  of shear, are 

except those lying in the shear plane, rotate towards the shown by triangles and squares. 
shear direction, they never approach close to this direc- 
tion even for large shears. For large strains group 2 
lineations plot close to a great circle, but this neither v = 0, cross both the extension field and the shortening 
defines the shear plane nor the XY-plane. field of the finite strain ellipsoid, and thus be extended in 

Examples of rotation of pre-shear fold axes are given some directions and shortened in others. The orienta- 
by B a k e t  al. (1975) from Greenland, and by 'Pecher  tions of the maximum finite extengion and shortening 
(1977) from the Himalayas. axes X e and Ye in the plane, at a given value of ~/, are 

found as the mid-points of those parts of the great circle 
Two-dimensional strain in a randomly oriented plane for the plane which falls within the extension field and 

the shortening field respectively (Figs. 4 and 6). The 
A plane P, having the initial orientation (v, p) which is orientations are given by equations (23)-(27) of the 

deformed to the orientation (v, p') (Fig. lb),  will, unless Appendix. 
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Table 1. Length of the principal strain axes Xp and Yp in the planes shown in Figs. 7(a-f) and thickness t of layers with initial thickness 1 

Plane 1 Plane 2 Plane 3 Plane 4 Plane 5 Plane 6 Plane 7 
(v, p) = (30, 40) (v, p) = (40, 130) ( v , p ) =  (150,5.37)(v,  p) = (70, 171.3)(v, p) = (90, 60) (v, p) = (80, 30) (v, p) = (0, 90) 

",/Xx,, X/Xv~ t X/X.X~ X/Xvp t X/X.x~ "X/X.y,, t X/kx,, X/hy~ t X/Xxp X/Xy~ t X/Xx~ X/~.v~ t X/~.x,, X/hv~, 

~/ = 1 1,08/0.63/1.'~8 1.58/0.92/0.69 1.01/0.91/1.09 1.10/0.96/0.95 1.52/0.66/1.00 1.24/0.74/1.08 1.41/1.00/0.71 
'~ -- 3 1.64/0.67/0.90 2.97/0.85/0.40 1.02/0,76/1.29 1.30/0.88/0.88 2,94/0.34/1.00 1.90/0.41/1.27 3.16/1.00/0.32 
"V = 6 3,34/0.80/0.38 5.19/0.81/0.24 1.05/0.49/1.93 1.64/0.79/0.78 5.38/0.19/1.00 3.17/0.19/1.65 6.08/1.00/0.16 
3~ = 10 5.84/0.83/0.21 8.22/0.80/0.15 1.11/0.19/4.82 2.12/0.70/0.68 8.77/0.11/1.00 5.05/0.10/2.00 10.05/1.00/0.10 

D u r i n g  the  p rog res s ive  d e f o r m a t i o n  the  Xp and  Yp and  Y~ for  the  first  i n c r e m e n t a l  shea r  in p l a n e  P0. In  this  
axes  will change  the i r  pos i t ion ,  no t  on ly  in  r e l a t i o n  to  the  ge ne ra l  case  ve ry  la rge  s h e a r  s t ra ins ,  a b o u t  20 o r  m o r e ,  
a b c - k i n e m a t i c - a x e s ,  bu t  a lso  in r e l a t i o n  to  m a t e r i a l  a re  r e q u i r e d  to  m a k e  the  l ines  L a n d  M a n d  the  X v d i r e c -  

l ines,  d e f i n e d  as l ines  a t t a c h e d  to  m a t e r i a l  po in t s ,  wi th in  t ion  s u b p a r a l l e l  to  t he  a -ax i s ,  a n d  the  Yp d i r ec t i on  sub-  
the  p l ane .  W h i l e  the  m a t e r i a l  l ines  r o t a t e  in the  p l a n e  p a r a l l e l  to  the  b-axis.  F igu re s  7(b--f) i l lus t ra te  the  r o t a -  
con t a in ing  the  l ine and  the  a -ax i s ,  t he  Xp  a n d  Yp d i r ec -  t i on  of  seven  s e l e c t e d  p l a n e s  a n d  the  p o s i t i o n  o f  Xp  a n d  
t ions  r o t a t e  in a much  m o r e  c o m p l i c a t e d  m a n n e r  Yp axes  wi th in  t h e m  at  suex:essive s t ages  of  d e f o r m a t i o n .  
t o w a r d s  the  a -  a n d  b-axes  respec t ive ly .  F i g u r e  7 (a )  T h e  va lues  of  f in i te  s t r e t ch ing  a n d  s h o r t e n i n g  p a r a l l e l t o  
shows  these  r e l a t i ons  for  a gene ra l  case,  in which  the  t he  Xp a n d  Y e  axes  a re  g iven  in T a b l e  1, t o g e t h e r  wi th  
in i t ia l  o r i e n t a t i o n s  of  l ines  L and  M are  p a r a l l e l  to  X ~  the  f in i te  e l o n g a t i o n  t n o r m a l  to  t he  p l anes  [given by  

I - ,  

b b b 

d b b b 

b b 

J/~ ! o ! 

e b --JJ  

Fig. 7 (b-f) Rotation of seven selected planes (1-7) and positions of the internal strain axes Xp (crosses) and Yp (circles) in 
the planes at different stages of deformation. Plane 1 is identical to plane P in (a). 



106 L. SKJERNAA 

A:'Y-O B:'Y°O 
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B:~- IO 

Fig. 8. Profiles through folds which include planes 1--4 (A) or planes 1, 2 and 4 (B) in their surfaces, and which initially 
(7 ffi 0) have constant layer thickness. The profile planes change their material position from one increment of deformation 

to the next. The trace of the shear planes is horizontal in all the profiles. 

equat ion (28) of the Appendix].  folds are fulfilled when competen t  layers are involved in 
Four  of the planes (1, 2, 3 and 4) intersect each other  the defortnation. Manz & Wickham (1978) have 

in a line F, which could describe a fold axis. Figure 8 described some rhodel exper iments  on buckle folding 
shows the change of shapes, seen in profiles, of two folds during simple shear deformation.  Howeve r  in all their 
which have fold axes parallel to F. Fold A includes in its models  the competent  layer paralleled the b-axis of the 
folded surface planes 1 and 2 in the limbs and 3 and 4 in deformation.  
the hinge zone. Fold B includes planes 1 and 4 in the For randomly oriented layers the orientat ions of the 
limbs and plane 2 in the hinge zone. While fold A buckle fold axes and boudins are however  far from 
becomes more  and more  t ightened and over turned obvious. 
during the deformation,  fold B is unrolled. Note  how If the fold axes were thought to be perpendicular  to 
fold B could easily be mis taken for a folded pinch-and-  the maximum finite shortening direction parallel with 
swell structure, especially where ",/= 1 and ",/= 3. the surface of the layer, and the boudins perpendicular  

Bak et al. (1975) have illustrated the change of style, to the max imum finite extension direction, this would 
seen in the ac-plane,  of some very complicated folds imply that they changed their material  position 
which are redeformed by simple shear, throughout  the deformation.  This is obviously not the 

case for boudins and also seems rather  doubtful  for the 
fold axes. Possibly the folds are initiated with their axes 

B U L K  H O M O G E N E O U S  P R O G R E S S I V E  S I M P L E  paralleling the X e  direction, but frofn the time of initia- 
S H E A R  A F F E C T I N G  C O M P E T E N T  L A Y E R S  tion, or f rom some stage of amplification, they may 

rotate as material  lines (Fig. 7a). This was also suggested 
As all planes, except those containing the b-axis, cross by E s c h e r &  Watterson (1974). Such a rotation 

both the shortening and stretching fields of the finite and mechanism implies that the resulting axial direction 
infinitesimal strain ellipsoids, the condition for the depends on the time of initiation of the folds, or the time 
format ion of both boudinage-st ructures  and buckle when the folds reached a certain amplitude. 
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The generat ion and subsequent  rotat ion and flat- C O N C L U S I O N  
tening of con temporaneous  buckle folds have been 
described by Williams (1978), who however  considers It is concluded that although a simple shear deforma-  
them to be rotating within the XY-plane  (the schistosity tion gives rise to a bulk plane strain, the structures in a 
plane) of the strain ellipsoid, shear zone should, in general, always be analysed in 

Model  experimerlts suggest that buckle folds are not three dimensions. 
initiated simultaneously throughout  the competent  layer The type, style and orientat ion of medium scale struc- 
(Cobbold  1976), but that one fold is formed in a place tures in a shear zone, are highly dependent  on the initial 
where the layer had a suitable initial heterogenei ty,  and orientat ion of pre-existing planes. This is especially so 
the subsequent  folding spread out to both  sides f rom the when the structui-es develop as a consequence of 
first fo rmed  fold. If this is true for the present type of rheological contrasts be tween the deformed layer (or 
deformation,  folds with varying axial directions would dyke or vein) and the host rock. A great variety of struc- 
be expected. The orientat ion of the first formed fold may tures such as boudins, chocolate-block boudins, folds 
however  to some extent guide the orientat ion of the and super imposed folds and combinat ions of these, may 
subsequent  folds, be expected, even within a single layer, 

As for the boudins,  their orientat ion may parallel the The post -shear  distribution and style of pre-shear  
Yp axis at some t ime between the initial pinching and the folds, are similarly dependent  on their original orienta-  
final separat ion,  but f rom this stage they rotate  as mate -  tion. Very large strains are generally required to make  
rial lines. The final orientat ion of the boudin is highly both pre-  and syn-shear linear structural elements  sub- 
dependent  on the t ime where  it starts to rota te  as a m~ite- parallel with the a-axis in a simple shear deformation.  
rial line (see Fig. 7a). On the basis of theories and models proposed  in this 

Whe the r  a certain layer develops both boudinage and article and when the orientat ions of slip folds are also 
buckle fold structures, and which of these predates  the taken into consideration, the old discussion (see Kvale 
other,  is dependent  on the initial orientat ion of the layer, 1953 and Rhodes  & Gaye r  1977 for further  references)  
and other  factors (see Talbot  1970). as to whether  the linear structures in shear zones are a or 

A layer parallel to P0 in Fig. 7(a), and to plane 1 in b structures seems ra ther  meaningless.  
Figs. 7(b-f) ,  will at the beginning of the deformat ion  
undergo a low extension in the Xp direction, but a rela- Acknowledgements--Thanks are due to J. Myers  who improved the 
tively large shortening in the Yp direction (see Table  1). English text, to Max Schierling who drafted the figures, and to H. 

Mieheelsen for his advice in the preparat ion of compute r  programmes .  
This may  result in buckle folds with axes subparallel  to L Furthermore to Hans Ramberg ,  who, after the submission of this 
(Fig. 7a). These folds amplify and change shape during paper, drew my attention to a study of similar problems (Ramber$ & 
the next part  of the deformation.  As the stretching Ghosh  1977), which I had not formerly been aware of. 

parallel to X e becomes  greater,  boudinage at a high 
angle to the fold axes may result. Between ~/= 1 and 
~/= 2 the direction normal  to the fold axes (parallel with R E F E R E N C E S  
the surface of the layer) shifts f rom a progressive shor- 
tening to a progressive extension. This may cause the Bak, J. & KorstgArd, J. & Sorensen,  K. 1975. A major  shear  zone 

within the Nagssugtoqidian of West  Greenland.  Tectonophysics 27, 
folds to partly unroll. Also, as the long directions of the 191-209. 
boudins pass the bc-plane during their rotation, they Carreras,  J. 1975. Determinaci6n de las relaciones angulares  y de la 
become progressively stretched, and consequently deformaci6n pot  cizalla, para  cizallamientos en  mater iales  con una  

heterogeneidad planar. Acta Geol. Hispdnica 10, 141-145.  
boudinage at a high angle to the first formed boudins Cobbold, P. 1976. Fold shapes as functions of progressive strain. Phil. 
may occur. Trans. R. Soc. A,283, 129-138.  

The final result is chocolate-block boudinage with Escher ,  A. & Wat terson,  J. 1974. Stretching fabric, folds and crustal 
shortening.  Tectonophysics 22, 223-23  I. 

folds o r  r e m n a n t s  of folds preserved in the individual Es the r ,  A. & Es ther ,  J. C. & Wat terson,  J. 1975. The  reor iemat ion of 
boudins, the Kangamiu t  Dike Swarm, West  Greenland.  Can. Jl Earth Sci. 12, 

A layer parallel to plane 5 (Figs. 7b- f )  is continously 158-173. 
Flinn, D. 1962. On  folding during three-dimensional  progressive 

extended parallel to X e and shortened parallel to Y e  deformation. Q. Jl geol. Soc. Lond. 118, 385--433. 
throughout  the deformation.  As the thickness of the Kvale, K. 1953, Linear  s tructures and their relation to movem en t  in 
layer is constant (the elongation normal  to the layer s u r -  the Caledonides  of Scandinavia and Scotland. Q. Jl geol. Soc. Lond. 

109, 51-74.  
face is zero, Table 1), the layer may boudinage and the Manz. R. & Wickham,  J. 1978. Exper imenta l  analysis of folding in 
boudins may be folded sideways (in the plane of the simple shear. Tectonophysics 44, 79-90. 
layer) with axes more  or less perpendicular  to the layer. Owens,  W. H. 1972. Strain Modification of angular  density distribu- 

tions. Tectonophysics 16. 249-261.  
Similar interpretat ions could be given to the other  Pecher,  A. 1977. Geology of the Nepal  Himalayas:  Deformat ion  and 

planes in Figs. 7(b-f) .  In some cases super imposed folds petrography in the main central thrust  zone. Colloques inter- 
nationau.x du C.N.R.S. No. 268 l~eologie et G~ologie de l'Himalaya. may form. This may happen if the first formed folds are 

Ramberg ,  H. & Ghosh ,  K. 1977. Rota t ion and strain of linear and 
rota ted so far away from the normal  to the infinitesimal planar  structures in three-dimensional progressive deformations. 
shortening direction of the layer, and the folds are tight- Tectonophysics 40, 309-337. 
ened and over turned  so much,  that continued shortening Ramsay,  J. G. 1967. Folding and Fracturing of Rocks. McGraw-Hill ,  

' New York. 
c a n  n o  longer be accommoda ted  by the folds. Ramsay,  J. G. & Graham.  R. H. 1970. Strain variation in shear  belts. 

Can. J. Earth Sci. 7. 786-813.  
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Rhodes ,  S. & Gayer ,  R. A.  1977. Non-cylindrical  folds, l inear s truc-  Combin ing  it with (9), it simplifies to: 
tures  in the X-direct ion and myloni te  deve loped  dur ing  t ranslat ion cos ~p sin 13 - ' / s i n  ~0 
of the Caledonian  Kalak Nappe  Complex  of F inmark .  Geol. Mag. sin 13' = cos ~p' x/X (13) 
114, 329-341 .  

Skjernaa ,  L. 1972. The  discovery of a regional  c rush  belt in the Or j e  
area,  sou theas t  Norway.  Norsk geol. Tidsskr. 52, 459--461. As  the denomina to r  is always positive, sin 13' is positive for cos ~ sin 13 
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= s in - '  [ s in  ~ '  ~ /h  ] (14) 

APPENDIX Combin ing  (12) with (6) and (14) and rearranging:  
1 -h  = '/2 sin-' go' + 2 ' / s i n  @' cos go' sin 13' + 1. (15) 

R O T A T I O N  O F  P L A N E S  F r o m  (11): 
cos 13' cos go' X/h 

F r o m  the spherical  triangle shown  in Fig. l (b ) :  360 - 13 = cos -~ (16) 
13 cos go 

tan a = - t a n  picos ol and tan  ix' = - t a n  p ' lcos  vl. (1) 
F r o m  (13) combined  with (10): 

ct and a '  are  the angles in the unde fo rmed  and  de fo rmed  state  be tween  sin 13' cos ~ '  ~ /k  + ' / s i n  q~' x /k  
the  a-axis  and  the  line of  in tersect ion be tween  the plane P a n d  the  ac- sin 13 = 
plane,  cos ~0 

Now,  1 I + "Y (Ramsay  1967, p. 88). 
tan  a '  tan  ct If sfn 13' cos go' + ' / s i n  go' > 0, equa t ion  (16) gives 13. 

E q u a t i o n  (15) may  be rewri t ten  to: 
By subst i tut ing the values f rom (1) into this equa t ion  and replacing 1/~. - '/-' sin-" go' - 1 

= ( 1 7 )  1 with - t a n  ( p - 9 0 )  we arrive at: sin 13' 2 ' / s i n  go' cos go' 
tan p 

p'  -- tan -z ( tan ( /0 -90)  + vlcos vl) + 90. (2) F r o m  Fig. 3(c): 

72 sin-'q~ = k + 1 - 2 c o s ~ o ~ / k  

k + 1 - "¢ : sin 2 q~ Combin ing  with (9): R O T A T I O N  A N D  E L O N G A T I O N  O F  L I N E S  cos ~ = • 
2~/X 

F r o m  Fig. 3(b):  

1 - ' / s i n  q~ cos q0 sin 13 
sin ~u sin go' , so  sin m'  = sin ~ '  sin m, (3) cos ~o = • (18)  

sin A ffi sin----'-"m ffi sin m'  sin go x / (  V z sin" q0 - 2" /s in  go cos ~ sin 13 + 1 ) 

cos go sin (13 - 90)  cos go' sin (270  - 13') so 
c o s A  _..m 

sin m sin m '  T W O - D I M E N S I O N A L  S T R A I N  I N  A R A N D O M L Y  O R I E N T E D  
P L A N E  

cos go sin (13 - 90) 
sin m = ~P' sin m'  (4) F r o m  triangle A B C  (Fig. 6) where  z_ A = 20', < C ffi 180 - p'  and 

cos sin (270 - 13') 
the side A C =  v for plane CBC' when  v ~ 9 0 ,  and 180 - v when  
v ~ 90: 

cos m ffi cos q0 cos (13 - 90) ffi cos q0 sin 13 (5) sin B --- sin 20'  sin v (19) 

cos m'  ffi cos go' cos (270 - 13') ffi - c o s  go' sin 13'. (6) sin a 

F r o m  Fig. 3(c): cos B = - c o s  20' cos (180 - p ' )  - sin 20' sin (180 - p ' )  leos vl. 

sin m ffi sin m '  ~ /k  (7) (20)  
cos 20' + cos B cos (180 - p ' )  k ffi I + '/: sin 2 go - 2" /s in  go cos m. (8) cos a = (21) 

Combin ing  (8) and (5): sin B sin (180 - p') 

X = ,y2 sin: q~ - 2" / s in  go cos gu sin 13 + 1. (9) Subst i tut ing (19) and (20)  in (21) and rearranging:  

Combin ing  (7) and (3): 
_ sin go tan a sin (180 - p ' )  sin v 

s i n m =  X/k sin go' sin m, o r s i n g o '  - 
sin go X/h cot 20 ' =  - cot 20'  cos: (180 - p ' )  - sin (180 - p ' )  cos (180 - p ' )  Icos v[. 

sin go (0 go' = sin -~ - ~ ,  ~ go' ~ 90). (10)  (22) 

2 Using 20'  ffi tan -~ - 7  (p. ) and dividing by two, (22)  simplifies to: 
Combin ing  (7) and (4): cos go sin (13 - 90) --- cos g0' sin (270 - 15')~/k. 
Us ing  no rma l  t r igonometr ic  t ransformat ions :  a "~ 

cos ~, cos 13 "T 13' = cos -l (11) ~ 1 
360-15' cos g0' ~ /k  a - 9 0 t  ffi ~ t an - t  

2 

W h e t h e r  equa t ion  ( l l ) g i v e s t h e v a l u e o f 1 5 ' o r o f 3 6 0  - 13' is seen  f rom [- sin (180 - p ' )  sin • "1 
the sign of sin 13': w h e n  sin 13' is posit ive equa t ion  (11)  gives 13', if it is / 
negative it gives 360 - 13'. F r o m  Fig. 3(c): L ' / /2  (1 - cos2 (180 - p ' ) )  - sin (180 - p ' )  cos (180 - p ' )  leos v~ J 

1 = "t: sin: go + h - 2"t sin go cos m ' x / k .  (12)  (23)  

If the  figure in the square  brackets  is positive, equa t ion  (23)  gives ~; if 
Subst i tut ing cos m'  with - c o s  ¢ '  sin 15' f rom (6) and rearranging:  

it is zero,  a _- 0 for  180 - p'  > 20' and a =  90 for  180 - p '  < 20'.  If  the 
1 sin 2 go k 

sin 15' = 
g ,  

a 
2 , / s i n  go cos go'~,/?~ figure in the  square  brackets  is negative,  equa t ion  (23) gives ~ - 90. 



D e f o r m a t i o n  o f  r a n d o m l y  o r i e n t e d  s t r u c t u r e s  d u r i n g  s i m p l e  s h e a r  1 0 9  

To find the orientation (13', ~ ' )  of X~ a plane containing the c- Similarly the orientation (8 ' ,  ~P') for Ye, the maximum finite shor- 
kinematic-axis and Xp is drawn to cut the ab-plane in L (Fig. 6). tening direction in the plane, is found from triangle C'MYp (Fig. 6): 
L A  = 13' - 180 
L C =  v -  8' + 180 for v ~ 9 0 ,  p' > 90 and for v < 90, p' < 9 0  ~' =s in  ~ [ s i n ( 1 8 0 -  p ' ) s i n ( 9 0  a ) ] .  (26) 
L C =  13' - 180 - v f o r  v <  90, p' > 90 and for v ~  90, p' < 90 

L L C X p =  1 8 0 -  p ' f o r p ' > 9 O a n d p ' f o r p '  ~ 9 0 .  I t ° s ( 1 8 0 -  P ' ) c ° ~ a  ! 
From triangle CXI~L: " 8 '  = ± sin-X - ÷ v. (27) cos ~' 

~' = s in - ' l s in  (180 - p ')  sin ~ .} (24) 
Here the sign in front of the sin- ~ is negative for v ~ 90. 

f cos (180 p') sin 
a 

• J +  v + 180. (25) putting the values of 8 '  and ~'  into equation (15). 
8'  = - sin- ~ ~ The value of stretching and shortening X/h of Xpand Ypare found by 

cos ~' As the deformation is non-dilatational ~/hx~ X,/kyp t = 1, where t is 
the thickness of a layer with initial thickness 1, and where X/hxp and 

For v > 90 the sign in front of the sin -~ is negative, for v ~< 90 it is X/kyp are measured in the layer surface, t is then found from: 
1 positive, t = X/hx p X/,h ~ .  (28) 


