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Abstract—A mathematical solution is presented of how randomly oriented planes and lines are rotated and
deformed during progressive homogeneous simple shear. The results are used to predict the redistribution and
modification of pre-shear folds. For most initial orientations very large shears (y = 20 or more) are required to
make the fold axes subparallel to the a-axis of the simple shear deformation.

During progressive deformation the principal axes of the two-dimensional strain in a randomly oriented plane
rotate, both in relation to the kinematic axes and in relation to material lines included in the plane. This may result
in very complicated structures when competent layers are involved in the deformation. Combinations of superim-
posed fold and boudinage structures, with orientations highly dependent on the initial orientation of the layer, are

to be expected.

INTRODUCTION

It 1s well known that shear zones in isotropic rocks
develop a cleavage, schistosity or foliation parallel to the
XY-plane of the finite strain ellipsoid, and often a very
strong stretching lineation paralle! to the X-direction.

Many shear zones cut through terrains which already
possess planar and linear structural elements with var-
ious orientations. An example is a folded or multiple
folded gneiss terrain. As the pre-shearing structural ele-
ments are not in general symmetric with the kinematic
axes of the simple shear deformation, it is necessary to
deal with their rotation and deformation in three dimen-
sions.

Medium scale structures, in the form of folds and/or
boudinage structures, are very common in major shear
zones. The folds may be of the compositional layering,
which may or may not parallel the XY-plane, but folded
dykes and discordant or concordant quartz veins or
quartzo-feldspathic veins are also common. Quite com-
monly these folds are combined with boudinage struc-
tures, but the distance between single boudins may be so
large as to make it difficult to reconstruct the original
layer.

The structures may have formed either prior to
shearing or as a consequence of simple shear deforma-
tion, either from buckle folding and/or boudinage of
competent layers involved in the deformation, or by
inhomogeneities in the simple shear. Stretching linea-
tions may be parallel to the layer and the maximum finite
stretching directions in the surface of the layer, not the
X-direction of the bulk finite strain. Similarly, intersec-
tion lineations parallel to the intersections between layer
surfaces and shear plane, are not parallel to the Y-
direction.

The rotation and deformation of planar and linear
structures in irrotational deformations was thoroughly
treated by Flinn (1962) and later discussed by Ramsay
(1967) and by Talbot (1970).

This article presents a mathematical solution for the

reorientation and deformation of pre-shear zone planes
and lines during the formation of a shear zone by simple
shear, and some models for the initiation and progres-
sive development of contemporaneous shear zone struc-
tures. The practical application of this theory will be
described in a later paper about medium scale structures
and their orientations within a major Precambrian shear
zone in southeast Norway, already mentioned by
Skjernaa (1972).

PROGRESSIVE HOMOGENEOUS

SHEAR

SIMPLE

Rotation of planes

The spatial orientations of a plane Pin relation to the
kinematic axes a, b and ¢ of a progressive simple shear
deformation, can be described by the angles v (0 <
v < 180) and p (0 < p < 180) (Figs. 1a & b). The plane
will rotate during the deformation around its line of
intersection with the shear plane. The angle v will
remain unchanged, while p changes to p’. For a certain
amount of shear, given by the value of v, p’ is given by
equation (2) of the Appendix. A diagram giving p’ as a

b C

Fig. 1. (a) Localisation of the angles v and p which define the orienta-
tion of a plane.

101



102

Fig. 1. (b) Stereographic lower hemisphere projection showing the
rotation of a plane (v, p) to a position (v', p').

function of v and p has been constructed for y = 4 (Fig.
2). It is seen that the amount of rotation increases as v
approaches 180 (see also Figs. 7b-f). Planes having
small values of p will only rotate slightly for low values of
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v, but for high shears they will rotate more, except when
v is close to 90.

As an example a plane with initial orientation v = 30,
p=4 will have have p’' =10.05 for y=10 but
p' = 161.68 for y=20 and p’ = 178.03 for vy = 50.
However, a plane with v= 30, p = 1 will rotate much
less: p' =1.18 for y= 10, p’ = 1.43 for vy =20 and
p' = 4.09 for vy = 50.

The largest possible rotation (p’—p) is taken up by the
plane having the initial orientation (v, p) = (0, 28’)
where 20’ is the angle between the shear plane and the
other plane of no finite longitudinal strain in the strain
ellipsoid. It will end up having the orientation
(v, p)= (0, 180-20'), and then have been rotated
through an angle 180-48’. 20’ = tan™! z (Ramsay &
Graham 1970 equation 36). K

A mathematical solution for the reorientation of
planes in a simple shear deformation, is also given by
Carreras (1975) and Owens (1972). A magnificent
example of such reorientations is described from the
Nagssugtogidian shear beit in West Greenland by
Escher et al. (1975).
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Fig. 2. Diagram showing p’ as a function of v and p after a simple shear of y = 4.
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Fig. 3. (a) Localisation of the angles B and ¢ which define the orientation of a line. (b) Stereographic projection showing the
rotation of a line L (B, ¢) to a position L' (B’, ¢'). (¢) Triangle OLL’ from Fig. 3(b).
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Fig. 4. Stereographic projection showing a series of cones, each of which contains all the lines that have been elongated by a
certain amount given by the values of A.
Fig. 5(a~e). Rotation of pre-shearing lineations with initial orientations confined by cones 1-5, 5(a). The numbers in
brackets are values of 1/ giving the elongation of the original central line of the cones. The great circles in (a) describe the
pianes which after a certain shear (y indicated by the numbers) will have rotated to a position where they separate into the
extension and shortening fields. These positions are those of the A = 1 great circles in Figs. (b-¢). The squares mark the
orientation of the X-axis.
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Rotation and elongation of lines

A line L having an initial orientation in relation to the
kinemati¢ axes given by B (0=f=360) and
¢ (0 =< ¢ = 90) (Fig. 3a) and an initial length I (Figs. 3b
& c), will during the deformation rotate in the plane
containing the line L and the a-axis through an angle w,
and at the same time change its length. Lines initially
oriented such that 0 < 8 < 180 will shorten in the begin-
ning. But as they pass the bc-plane during their rotation
they will start to stretch. Lines with 180 = 8 =< 360 will
be stretched during the whole deformation.

The final position (B’, ¢') and the final length /A fora
certain amount of shear, is given by the equations (11),
(10) and (9) of the Appendix.

All the lines that have been equally elongated after a
certain amount of shear are contained within the surface
of a cone given by equation (17) of the Appendix. A
Lambert-net projection showing a series of such cones
for vy = 4 is given in Fig. 4. If the curves on Fig. 4 are
looked upon as contours, they give the shape of the
lower half of the deformation ellipsoid (notice that the
values given are quadratic elongations). The diagram is
divided by the two great circles describing the A =1
planes into an extension field and a shortening field.

The angle w through which a line has rotated during
the deformation (Figs. 3b & c) is given by equation (18)
of the Appendix.

The distribution of lines will be such that during
deformation all lines which initially lay between the
shear plane and the plane with orientation (v, p) =
(0, 20") will spread over the shortening field, while lines
with other initial orientations will be concentrated into
the stretching field and at the two A = 1 planes.

Exampiles of the rotation and spread/concentration of
lines during successive stages of the deformation are
given in Figs. 5(a— e). Five groups of lineations, which
for vy = 0 are bounded by cones with a radius of 10°, have
been chosen to illustrate the influence of the initial
orientation on various distribution patterns arrived at
for certain shears. Each of the groups could for a par-
ticular shear zone define the orientation of fold axes
related to pre-shearing folding.

The modification of angular density distribution of
lines during simple shear deformation is not discussed
here in any detail. It is described by Owens (1972).

It is seen from Figs. S(a—e) that although all lines,
except those lying in the shear plane, rotate towards the
shear direction, they never approach close to this direc-
tion even for large shears. For large strains group 2
lineations plot close to a great circle, but this neither
defines the shear plane nor the XY-plane.

Examples of rotation of pre-shear fold axes are given
by Bak et al. (1975) from Greenland, and by Pecher
(1977) from the Himalayas.

Two-dimensional strain in a randomly oriented plane

A plane P, having the initial orientation (v, p) which is
deformed to the orientation (v, p’) (Fig. 1b), will, unless
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Fig. 6. Position of the strain axes Xpand Y, in a rotated and internally
deformed plane CBC'. For further explanation see text.

Fig. 7 (a) Orientations of the X, axes (crosses) and Y, axes (circles)ina

plane P with initial position P, (v, p) = (30, 40) for different values of v

indicated by the numbers. The orientations of the material lines L and

M, initially paralleling X, and Y, for the first increment of shear, are
shown by triangles and squares.

v = 0, cross both the extension field and the shortening
field of the finite strain ellipsoid, and thus be extended in
some directions and shortened in others. The orienta-
tions of the maximum finite extension and shortening
axes Xp and Yp in the plane, at a given value of v, are
found as the mid-points of those parts of the great circle
for the plane which falls within the extension field and
the shortening field respectively (Figs. 4 and 6). The
orientations are given by equations (23)~(27) of the
Appendix.
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Table 1. Length of the principal strain axes X, and Y, in the planes shown in Figs. 7(a~f) and thickness ¢ of layers with initial thickness 1

Plane 1

\/)‘Xp \/A vo !

Plane 2

VAX, VAy, 1

Plane 3

VAxe VAy, t

Plane 4

\/)‘XP \/}‘ o !

Plane 5

VAxp VAy, 1

Plane 6

VAxe VAy,

Plane 7

(v, p) = (30, 40) (v, p) = (40, 130) (v,p) = (150,5.37)(v, p) = (70, 171.3)(v, p) = (90, 60) (v, p) = (80, 30) (v, p) = (0, 90)

VA%, VAyp !t

2 22

— O\ G)

1.08/0.63/1.48
1.64/0.67/0.90
3.34/0.80/0.38
5.84/0.83/0.21

1.58/0.92/0.69
2.97/0.85/0.40
5.19/0.81/0.24
8.22/0.80/0.15

1.01/0.91/1.09
1.02/0.76/1.29
1.05/0.49/1.93
1.11/0.19/4.82

1.10/0.96/0.95
1.30/0.88/0.88
1.64/0.79/0.78
2.12/0.70/0.68

1.52/0.66/1.00
2.94/0.34/1.00
5.38/0.19/1.00
8.77/0.11/1.00

1.24/0.74/1.08
1.90/0.41/1.27
3.17/0.19/1.65
5.05/0.10/2.00

1.41/1.00/0.71
3.16/1.00/0.32
6.08/1.00/0.16
10.05/1.00/0.10

During the progressive deformation the Xp and Y,
axes will change their position, not only in relation to the
abc-kinematic-axes, but also in relation to material
lines, defined as lines attached to material points, within
the plane. While the material lines rotate in the plane
containing the line and the a-axis, the X, and Ypdirec-
tions rotate in a much more complicated manner
towards the a- and b-axes respectively. Figure 7(a)
shows these relations for a general case, in which the
initial orientations of lines L. and M are parallel to X,

and Yjp, for the first incremental shear in plane F,. In this
general case very large shear strains, about 20 or more,
are required to make the lines I and M and the Xpdirec-
tion subparallel to the a-axis, and the Yj direction sub-
parallel to the b-axis. Figures 7(b~f) illustrate the rota-
tion of seven selected planes and the position of X, and
Y axes within them at successive stages of deformation.
The values of finite stretching and shortening parallel to
the Xp and Yp axes are given in Table 1, together with
the finite elongation t normal to the planes [given by

Fig. 7 (b-f) Rotation of seven selected planes (1~7) and positions of the internal strain axes X, (crosses) and Y, (circles) in
the planes at different stages of deformation. Plane 1 is identical to plane P in (a).
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A:v-0
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B:v-0

B:v-1

Fig. 8. Profiles through folds which include planes 1-4 (A) or planes 1, 2 and 4 (B) in their surfaces, and which initially
(v = 0) have constant layer thickness. The profile planes change their material position from one increment of deformation
to the next. The trace of the shear planes is horizontal in all the profiles.

equation (28) of the Appendix].

Four of the planes (1, 2, 3 and 4) intersect each other
in a line F, which could describe a fold axis. Figure 8
shows the change of shapes, seen in profiles, of two folds
which have fold axes parallel to F. Fold A includes in its
folded surface planes 1 and 2 in the limbs and 3 and 4 in
the hinge zone. Fold B includes planes 1 and 4 in the
limbs and plane 2 in the hinge zone. While fold A
becomes more and more tightened and overturned
during the deformation, fold B is unrolled. Note how
fold B could easily be mistaken for a folded pinch-and-
swell structure, especially where y = 1 and y = 3.

Bak et al. (1975) have illustrated the change of style,
seen in the ac-plane, of some very complicated folds
which are redeformed by simple shear.

BULK HOMOGENEOUS PROGRESSIVE SIMPLE
SHEAR AFFECTING COMPETENT LAYERS

As all planes, except those containing the b-axis, cross
both the shortening and stretching fields of the finite and
infinitesimal strain ellipsoids, the condition for the
formation of both boudinage-structures and buckle

folds are fuifilled when competent layers are involved in
the deformation. Manz & Wickham (1978) have
described some model experiments on buckle folding
during simple shear deformation. However in all their
models the competent layer paralleled the b-axis of the
deformation.

For randomly oriented layers the orientations of the
buckle fold axes and boudins are however far from
obvious.

If the fold axes were thought to be perpendicular to
the maximum finite shortening direction parallel with
the surface of the layer, and the boudins perpendicular
to the maximum finite extension direction, this would
imply that they changed their material position
throughout the deformation. This is obviously not the
case for boudins and also seems rather doubtful for the
fold axes. Possibly the folds are initiated with their axes
paralleling the X, direction, but from the time of initia-
tion, or from some stage of amplification, they may
rotate as material lines (Fig. 7a). This was also suggested
by Escher & Watterson (1974). Such a rotation
mechanism implies that the resulting axial direction
depends on the time of initiation of the folds, or the time
when the folds reached a certain amplitude.
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The generation and subsequent rotation and flat-
tening of contemporaneous buckle folds have been
described by Williams (1978), who however considers
them to be rotating within the X'Y-plane (the schistosity
plane) of the strain ellipsoid.

Model experimerits suggest that buckle folds are not
initiated simultaneously throughout the competent layer
(Cobbold 1976), but that one fold is formed in a place
where the layer had a suitable initial heterogeneity, and
the subsequent folding spread out to both sides from the
first formed fold. If this is true for the present type of
deformation, folds with varying axial directions would
be expected. The orientation of the first formed fold may
however to some extent guide the orientation of the
subsequent folds.

As for the boudins, their orientation may parallel the
Y axis at some time between the initial pinching and the
final separation, but from this stage they rotate as mate-
ria] lines. The final orientation of the boudin is highly
dependent on the time where it starts to rotate as a mate-
rial line (see Fig. 7a).

Whether a certain layer develops both boudinage and
buckle fold structures, and which of these predates the
other, is dependent on the initial orientation of the layer,
and other factors (see Talbot 1970).

A layer parallel to P, in Fig. 7(a), and to plane 1 in
Figs. 7(b-f), will at the beginning of the deformation
undergo a low extension in the X} direction, but a rela-
tively large shortening in the Y direction (see Table 1).
This may result in buckle folds with axes subparalielto L
(Fig. 7a). These folds amplify and change shape during
the next part of the deformation. As the stretching
parallel to X, becomes greater, boudinage at a high
angle to the fold axes may result. Between y = 1 and
v = 2 the direction normal to the fold axes (parallel with
the surface of the layer) shifts from a progressive shor-
tening to a progressive extension. This may cause the
folds to partly unroll. Also, as the long directions of the
boudins pass the bc-plane during their rotation, they
become progressively stretched, and consequently
boudinage at a high angle to the first formed boudins
may Occur.

The final result is chocolate-block boudinage with
folds or remnants of folds preserved in the individual
boudins.

A layer parallel to plane 5 (Figs. 7b-f) is continously
extended parallel to X, and shortened parallel to Y,
throughout the deformation. As the thickness of the
layer is constant (the elongation normal to the layer sur-
face is zero, Table 1), the layer may boudinage and the
boudins may be folded sideways (in the plane of the
layer) with axes more or less perpendicular to the layer.

Similar interpretations could be given to the other
planes in Figs. 7(b—f). In some cases superimposed folds
may form. This may happen if the first formed folds are
rotated so far away from the normal to the infinitesimal
shortening direction of the layer, and the folds are tight-

ened and overturned so much, that continued shortening .

can no longer be accommodated by the folds.
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CONCLUSION

It is concluded that although a simple shear deforma-
tion gives rise to a bulk plane strain, the structures in a
shear zone should, in general, always be analysed in
three dimensions.

The type, style and orientation of medium scale struc-
tures in a shear zone, are highly dependent on the initial
orientation of pre-existing planes. This is especially so
when the structures develop as a consequence of
rheological contrasts between the deformed layer (or
dyke or vein) and the host rock. A great variety of struc-
tures such as boudins, chocolate-block boudins, folds
and superimposed folds and combinations of these, may
be expected, even within a single layer.

The post-shear distribution and style of pre-shear
folds, are similarly dependent on their original orienta-
tion. Very large strains are generally required to make
both pre- and syn-shear linear structural elements sub-
parallel with the a-axis in a simple shear deformation.

On the basis of theories and models proposed in this
article and when the orientations of slip folds are also
taken into consideration, the old discussion (see Kvale
1953 and Rhodes & Gayer 1977 for further references)
as to whether the linear structures in shear zones are a or
b structures seems rather meaningless.
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APPENDIX

ROTATION OF PLANES

From the spherical triangle shown in Fig. 1(b):

tan @ = —tan picos vl and tan «’ = —tan p’lcos ul.

89
a and o’ are the angles in the undeformed and deformed state between
the a-axis and the line of intersection between the plane Pand the ac-
plane.

1 1

Now, - =
tan a tan a

+ vy (Ramsay 1967, p. 88).

By substituting the values from (1) into this equation and replacing

1 T . . .
@np with —tan (p—90) we arrive at:

p’ = tan™! (tan (p—90) + ylcos uvi) + 90. )

ROTATION AND ELONGATION OF LINES

From Fig. 3(b):

sin A = s'm ® - -s}—'li-, so sin m' = SINP_ sin m, 3)
sinm  sinm'
cos A = coscps.m B - 90)=cosq> 51.n(2:/'0 -B ) ©
sin m sin m
0! i -
sin m = a4 ?m (B - 90) sinm' (4)
cos ¢’ sin (270 - B')
cos m = cos ¢ cos (B — 90) = cos ¢ sin B (5)
cos m' = cos ¢’ cos (270 — B') = —cos ¢’ sin B’. 6)
From Fig. 3(c):
sin m = sin m’ \/A @)
A=1+ y*sin®> ¢ — 2y sin @ cos m. (8)
Combining (8) and (5):
A=+vy'sin ¢ - 2ysinpcosgsinf + 1. ()
Combining (7) and (3):
. - sin ¢’ . ., . Sing
sin m = /A e sin m, or sin ¢ ——-v)\
f o ein-l sin ¢ ' < 10
¢ = sin VN (0 s ¢’ < 90). (10)

Combining (7) and (4): cos ¢ sin (B ~ 90) =cos ¢’ sin (270 — B')\/\.
Using normal trigonometric transformations:
' _, Cos ¢ cos B
— = €08~} ~mm— —— (11)
360-p' cos @' VA
Whether equation (11) gives the value of B’ or of 360 — B’ isseen from
the sign of sin B’: when sin B’ is positive equation (11) gives B, if it is
negative it gives 360 — B’. From Fig. 3(c):
1 =+"sin’ ¢ + A — 2y sin ¢ cos m' /X, (12)
Substituting cos m’ with —cos ¢’ sin 8’ from (6) and rearranging:
1 - +vysin2¢ =X
2 sin ¢ cos @' VA

sin B’ =

L. SKJERNAA

Combining it with (9), it simplifies to:
cos@sinB —ysing

sin B’ =
B cos @' VA

(13)

As the denominator is always positive, sin 8’ is positive for cos ¢ sin 8
> vy sin @.

When the orientation (B, ¢') of the line in the deformed case is
known, the original orientation and the elongation it has taken up may
be found from the following equations.

From (10):
® = sin”! [sin @ VA
Combining (12) with (6) and (14) and rearranging:

(14)

—)1: = ysin® ¢’ + 2y sin ¢’ cos ¢ sin B’ + 1.

(15)
From (11):
cos B’ cos ' VA

(16)
Cos @

360 — B = cos™!
B

From (13) combined with (10):
sin B’ cos @' \/A + Ysin @' VA
Cos @ .

sin B =

If sin B’ cos ¢’ + vy sin ¢’ > 0, equation (16) gives B.
Equation (15) may be rewritten to:

o, UN = ylsinf ¢ ~ 1
sinf’ =

— amn
2 ysin ¢’ cos ¢’

From Fig. 3(c):
ysinP@ =X+ 1—2cos w\/\

A+ 1~ Y-sin?

cos @ = o ? Combining with (9):

1 - v sin ¢ cos ¢ sin B

Cos w =

. 18
V{(¥sin® ¢ -~ 2ysingcospsinp + 1) (18)

TWO-DIMENSIONAL STRAIN IN A RANDOMLY ORIENTED
PLANE

From triangle ABC (Fig. 6) where< A = 26’, < C= 180 — p’ and
the side AC = v for plane CBC' when v =90, and 180 — v when
v=90: :

sin 20’ sin v

sin B = -
sin a

(19)
cos B = —cos 28’ cos (180 — p’) — sin 28’ sin (180 — p’) |cos v|.
(20)
cos 28’ + cos B cos (180 — p')
sin B sin (180 — p') ’

cos a = 21)

Substituting (19) and (20) in (21) and rearranging:

tana _ sin (180 — p) sin v
cot28’ —cot 26’ cos®(180 — p') —sin (180 —~ p’) cos (180 — p') [cos ¢].

(22)
Using 26’ = tan™! % (p. ) and dividing by two, (22) simplifies to:

TSI
.Y——J
0
SIS
o
-3
=|

r sin (180 — p') sin
L‘y/Z (1 — cos? (180 — p')) — sin (180 — p’) cos (180 — p') |cos t|
(23)

If the figure in the square brackets is positive, equation (23) gives g—; if
itis zero,g= Ofor 180 — p’ > 26’ and %= 90for 180 — p’ <20'.Ifthe

figure in the square brackets is negative, equation (23) gives % - 90.
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To find the orientation (', ¢’) of Xp, a plane containing the c-
kinematic-axis and Xp is drawn to cut the ab-plane in L (Fig. 6).
LA =8 - 180
LC=v—-8" + 180 for v = 90, p’ > 90 and for v < 90, p’ < 90
LC=p ~ 180 - vfor v < 90, p’ > 90 and for ¢ = 90, p' < 90

< LCXp = 180 - p' for p’ > 90 and p’ for p' < 90.
From triangle CX,lL:
¢ = sin“['sin (180 - p) sing ] (24)

]+ v + 180.

8’ = = sin (25)

-1{ cos (180 — p’) sin 121

cos ¢

For v > 90 the sign in front of the sin™' is negative, for v < 90 it is
positive.
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Similarly the orientation (B’, ¢’) for Y, the maximum finite shor-
tening direction in the plane, is found from triangle C MY, (Fig. 6):

¢ =sin ' [sin (180 ~ p') sin (90 -5H) (26)

cos (180 — p') co.s_‘,—l
- ]+ v 27

B== sin“[ -
cos ¢
Here the sign in front of the sin™' is negative for v < 90.
The value of stretching and shortening v/ of Xpand Y,are found by
putting the values of B’ and ¢’ into equation (15).
As the deformation is non-dilatational \/Axp \/Ay, t = 1, where tis
the thickness of a layer with initial thickness 1, and where VAy, and
/Ay, are measured in the layer surface. t is then found from:

_ 1
e Vi, @8



